On Robust Information Extraction from High- Dimensional Data

نویسنده

  • Jan Kalina
چکیده

Information extraction from high-dimensional data represents an important problem in current applications in management or econometrics. An important problem from a practical point of view is the sensitivity of machine learning methods with respect to the presence of outlying data values, while numerical stability represents another important aspect of data mining from high-dimensional data. This paper gives an overview of various types of data mining, discusses their suitability for high-dimensional data and critically discusses their properties from the robustness point of view, while we explain that the robustness itself is perceived differently in different contexts.Moreover, we investigate properties of a robust nonlinear regression estimator of Kalina (2013).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Data Extraction using Content-Based Handles

In this paper, we present an approach and a visual tool, called HWrap (Handle Based Wrapper), for creating web wrappers to extract data records from web pages. In our approach, we mainly rely on the visible page content to identify data regions on a web page. In our extraction algorithm, we inspired by the way a human user scans the page content for specific data. In particular, we use text fea...

متن کامل

Dimension Reduction by Mutual Information Feature Extraction

During the past decades, to study high-dimensional data in a large variety of problems, researchers have proposed many Feature Extraction algorithms. One of the most effective approaches for optimal feature extraction is based on mutual information (MI). However it is not always easy to get an accurate estimation for high dimensional MI. In terms of MI, the optimal feature extraction is creatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014